Page Contents
Geometric Mean Inequality Codechef Solution
You are given an array A of length N containing the elements −1 and 1 only. Determine if it is possible to rearrange the array A in such a way that Ai is not the geometric mean of Ai−1 and Ai+1, for all i such that 2≤i≤N−1.
Y is said to be the geometric mean of X and Z if Y2=X⋅Z.
Input Format
The first line contains a single integer T – the number of test cases. Then the test cases follow.
The first line of each test case contains an integer N – the size of the array A.
The second line of each test case contains N space-separated integers A1,A2,…,AN denoting the array A.
Output Format
For each test case, output Yes if it is possible to rearrange A in such a way that Ai is not the geometric mean of Ai−1 and Ai+1, where 2≤i≤N−1. Otherwise output No.
You may print each character of Yes and No in uppercase or lowercase (for example, yes, yEs, YES will be considered identical).
Constraints
1≤T≤200
3≤N≤1000
Ai∈{−1,1}
Sample Input 1
3
5
1 1 1 -1 -1
3
1 1 1
6
1 -1 -1 -1 -1 1
Sample Output 1
Yes
No
Yes
Explanation
Test case 1: We can rearrange the array A to [1,1,−1,−1,1]. One can see that Ai2≠Ai−1⋅Ai+1, for any 2≤i≤N−1.
Test case 2: None of the rearrangements of A satisy the given condition.

SOLUTION
Program: Geometric Mean Inequality Codechef Solution in Python
# cook your dish here for _ in range(int(input())): n=int(input()) a=0 b=0 l=list(map(int,input().split())) for i in range(n): if l[i]==-1: a+=1 else: b+=1 if(abs(a-b)<2): print("YES") elif(abs(a-b)==2): if a%2: print("NO") else: print("YES") else: print("NO")
Related:
- Sasta Shark Tank Codechef Solution
- Six Friends Codechef Solution
- Best Coupon CHEAPFOOD Codechef Solution
- Geometric Mean Inequality Codechef Solution
- Pseudo Sorted Array Codechef Solution
April Long Challenge 2022 Solution
- Dazzling AXNODR Challenge AXNODR Codechef Solution
- Dazzling GCD Pair NOTUNIT Solution
- The Cooler Dilemma 2 WATERCOOLER2 Solution
- The Cooler Dilemma 1 WATERCOOLER1 Solution
- Ezio and Guards MANIPULATE Codechef Solution
- Pairwise Xors XORABC Codechef Solution
- Prime Sum PRIMESM Codechef Solution