np.clip | numpy.clip () v1.21 Manual

numpy.clip

numpy.clip(aa_mina_maxout=None**kwargs)

Clip (limit) the values in an array.

Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of [0, 1] is specified, values smaller than 0 become 0, and values larger than 1 become 1.

Equivalent to but faster than np.minimum(a_max, np.maximum(a, a_min)).

No check is performed to ensure a_min < a_max.Parametersaarray_like

Array containing elements to clip.a_min, a_maxarray_like or None

Minimum and maximum value. If None, clipping is not performed on the corresponding edge. Only one of a_min and a_max may be None. Both are broadcast against a.outndarray, optional

The results will be placed in this array. It may be the input array for in-place clipping. out must be of the right shape to hold the output. Its type is preserved.**kwargs

For other keyword-only arguments, see the ufunc docs.

New in version 1.17.0.Returnsclipped_arrayndarray

An array with the elements of a, but where values < a_min are replaced with a_min, and those > a_max with a_max.

clip(a, a_min, a_max, out=None)
    Clip (limit) the values in an array.
    
    Given an interval, values outside the interval are clipped to
    the interval edges.  For example, if an interval of ``[0, 1]``
    is specified, values smaller than 0 become 0, and values larger
    than 1 become 1.
    
    Parameters
    ----------
    a : array_like
        Array containing elements to clip.
    a_min : scalar or array_like or `None`
        Minimum value. If `None`, clipping is not performed on lower
        interval edge. Not more than one of `a_min` and `a_max` may be
        `None`.
    a_max : scalar or array_like or `None`
        Maximum value. If `None`, clipping is not performed on upper
        interval edge. Not more than one of `a_min` and `a_max` may be
        `None`. If `a_min` or `a_max` are array_like, then the three
        arrays will be broadcasted to match their shapes.
    out : ndarray, optional
        The results will be placed in this array. It may be the input
        array for in-place clipping.  `out` must be of the right shape
        to hold the output.  Its type is preserved.
    
    Returns
    -------
    clipped_array : ndarray
        An array with the elements of `a`, but where values
        < `a_min` are replaced with `a_min`, and those > `a_max`
        with `a_max`.
    
    See Also
    --------
    numpy.doc.ufuncs : Section "Output arguments"
    
    Examples
    --------
    >>> a = np.arange(10)
    >>> np.clip(a, 1, 8)
    array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8])
    >>> a
    array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
    >>> np.clip(a, 3, 6, out=a)
    array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
    >>> a = np.arange(10)
    >>> a
    array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
    >>> np.clip(a, [3, 4, 1, 1, 1, 4, 4, 4, 4, 4], 8)
    array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])

Weekly Contest 247

Biweekly Contest 55

June Long Challenge 2021 Solutions

March Long Challenge 2021 Solutions

April Long Challenge 2021 Solutions

Codechef Long Challenge Solutions

February Long Challenge 2021

January Long Challenge 2021

November Challenge 2020 SOLUTION CodeChef

October Lunchtime 2020 CodeChef SOLUTIONS

Related :

Related :

Leave a Comment