# From Rational to Binary Codechef Solution

## From Rational to Binary Solution Problem Code: REALBIN

Chef and Divyam are playing a game. They start with a rational number XX, such that 0<X<10<X<1.

In each turn, Chef chooses a positive real number YY. Then Divyam either adds or subtracts YY to XX. So XX is replaced with either X+YX+Y or X−YX−Y. If this number becomes 00 or 11, then Chef wins. Otherwise, the game continues.

You are given XX, and you have to determine whether Chef can win in a finite number of moves. More formally, does there exist a finite number NN so that Chef has a strategy that is guaranteed to win in at most NN moves?

Here, XX will be given in the form ABAB, where AA and BB are positive integers, A<BA<B and gcd(A,B)=1gcd(A,B)=1.

### Input

• The first line of the input contains a single integer TT denoting the number of test cases. The description of TT test cases follows.
• The first and only line of each test case contains two space-separated integers AA and BB.

### Output

For each test case, print a single line containing the string `"Yes"` if Chef can win the game in a finite number of moves and `"No"` otherwise (without quotes). You can print `"Yes"` or `"No"` in any case.

### Constraints

• 1≤T≤1061≤T≤106
• 1≤A<B≤10181≤A<B≤1018
• gcd(A,B)=1gcd(A,B)=1

Subtask #1 (100 points): Original constraints

### Sample Input

``````2
1 2
2 3
``````

### Sample Output

``````Yes
No
``````

### Explanation

Test case 1: Chef will choose Y=12Y=12, so whatever Divyam does, the number will become 00 or 11. Hence Chef will win in a finite number of moves.

Test case 2: No matter what Chef chooses, it can be shown that Divyam can make sure Chef never wins.

Program:

``````import io, os, time,sys

tests=int(input())
for _ in range(tests):

a,b=map(int,input().split())

if b&(b-1)==0:
sys.stdout.write("Yes\n")
else:
sys.stdout.write("No\n")``````