Page Contents
Throne Inheritance SOLUTION LEETCODE
A kingdom consists of a king, his children, his grandchildren, and so on. Every once in a while, someone in the family dies or a child is born.
The kingdom has a well-defined order of inheritance that consists of the king as the first member. Let’s define the recursive function Successor(x, curOrder), which given a person x and the inheritance order so far, returns who should be the next person after x in the order of inheritance.
Successor(x, curOrder):
if x has no children or all of x’s children are in curOrder:
if x is the king return null
else return Successor(x’s parent, curOrder)
else return x’s oldest child who’s not in curOrder
For example, assume we have a kingdom that consists of the king, his children Alice and Bob (Alice is older than Bob), and finally Alice’s son Jack.
In the beginning, curOrder will be [“king”].
Calling Successor(king, curOrder) will return Alice, so we append to curOrder to get [“king”, “Alice”].
Calling Successor(Alice, curOrder) will return Jack, so we append to curOrder to get [“king”, “Alice”, “Jack”].
Calling Successor(Jack, curOrder) will return Bob, so we append to curOrder to get [“king”, “Alice”, “Jack”, “Bob”].
Calling Successor(Bob, curOrder) will return null. Thus the order of inheritance will be [“king”, “Alice”, “Jack”, “Bob”].
Using the above function, we can always obtain a unique order of inheritance.
Implement the ThroneInheritance class:
ThroneInheritance(string kingName) Initializes an object of the ThroneInheritance class. The name of the king is given as part of the constructor.
void birth(string parentName, string childName) Indicates that parentName gave birth to childName.
void death(string name) Indicates the death of name. The death of the person doesn’t affect the Successor function nor the current inheritance order. You can treat it as just marking the person as dead.
string[] getInheritanceOrder() Returns a list representing the current order of inheritance excluding dead people.
Example 1:
Input
[“ThroneInheritance”, “birth”, “birth”, “birth”, “birth”, “birth”, “birth”, “getInheritanceOrder”, “death”, “getInheritanceOrder”]
[[“king”], [“king”, “andy”], [“king”, “bob”], [“king”, “catherine”], [“andy”, “matthew”], [“bob”, “alex”], [“bob”, “asha”], [null], [“bob”], [null]]
Output
[null, null, null, null, null, null, null, [“king”, “andy”, “matthew”, “bob”, “alex”, “asha”, “catherine”], null, [“king”, “andy”, “matthew”, “alex”, “asha”, “catherine”]]
Explanation
ThroneInheritance t= new ThroneInheritance(“king”); // order: king
t.birth(“king”, “andy”); // order: king > andy
t.birth(“king”, “bob”); // order: king > andy > bob
t.birth(“king”, “catherine”); // order: king > andy > bob > catherine
t.birth(“andy”, “matthew”); // order: king > andy > matthew > bob > catherine
t.birth(“bob”, “alex”); // order: king > andy > matthew > bob > alex > catherine
t.birth(“bob”, “asha”); // order: king > andy > matthew > bob > alex > asha > catherine
t.getInheritanceOrder(); // return [“king”, “andy”, “matthew”, “bob”, “alex”, “asha”, “catherine”]
t.death(“bob”); // order: king > andy > matthew > bob > alex > asha > catherine
t.getInheritanceOrder(); // return [“king”, “andy”, “matthew”, “alex”, “asha”, “catherine”]
Constraints:
1 <= kingName.length, parentName.length, childName.length, name.length <= 15
kingName, parentName, childName, and name consist of lowercase English letters only.
All arguments childName and kingName are distinct.
All name arguments of death will be passed to either the constructor or as childName to birth first.
For each call to birth(parentName, childName), it is guaranteed that parentName is alive.
At most 105 calls will be made to birth and death.
At most 10 calls will be made to getInheritanceOrder.
Related :
March Long Challenge 2021 Solutions
- An Interesting Sequence ISS SOLUTION
- Tree House THOUSES SOLUTION
- Valid Paths VPATH SOLUTION
- Modular Equation MODEQ SOLUTION
- Tic Tac Toe TCTCTOE SOLUTION
- Xor Equality XOREQUAL SOLUTION
- Golf LKDNGOLF SOLUTION
- Solubility SOLBLTY SOLUTION
April Long Challenge 2021 Solutions
- Chef and Dice SDICE Solution
- Worthy Matrix KAVGMAT Solution
- Binary String MEX MEXSTR Solution
- Boolean Game BOOLGAME Solution
- Tree Permutations TREEPERM Solution
- Destroy the EMP Chip CHAOSEMP Solution
- Chef and Pair Flips PAIRFLIP Solution
- String Power STRPOW Solution
- Brahma and Shiva SHRINES Solution
- Water Sort Puzzle (Challenge) WTRSORT Solution
- World Record BOLT Solution
- Strong Language SSCRIPT Solution
- Valid Pair SOCKS1 Solution
Codechef Long Challenge Solutions
February Long Challenge 2021
1. Frog Sort Solution Codechef
2. Chef and Meetings Solution Codechef
3. Maximise Function Solution Codechef
4. Highest Divisor Solution Codechef
5. Cut the Cake Challenge Solution Codechef
6. Dream and the Multiverse Solution Codechef
7. Cell Shell Solution Codechef
8. Multiple Games Solution Codechef
9. Another Tree with Number Theory Solution Codechef
10. XOR Sums Solution Codechef
11. Prime Game Solution CodeChef
12. Team Name Solution Codechef
January Long Challenge 2021
- Chef and Division 3 DIVTHREE SOLUTION Code Chef
- Encoded String DECODEIT SOLUTION Code Chef
- Point Of Impact BILLRD SOLUTION Code Chef
- Fair Elections FAIRELCT SOLUTION Code Chef
- Watching CPL WIPL SOLUTION Code Chef
- Chef and Ants ANTSCHEF SOLUTION Code Chef
- Blackjack BLKJK SOLUTION Code Chef
- And-Or Game ORAND SOLUTION Code Chef
- Stack-Queue Sort (Challenge) SQSORT SOLUTION Code Chef
- Expected Number of SCCs RCTEXSCC SOLUTION Code Chef
- Curious Matrix CURMAT SOLUTION Code Chef
- Cool Subsets COOLSBST SOLUTION Code Chef
- Sequence Creation ARCRT SOLUTION Code Chef
- Greedy Students GRDSTD SOLUTION Code Chef
November Challenge 2020 SOLUTION CodeChef
- Ada and Dishes SOLUTION ADADISH
- Iron Magnet and Wall SOLUTION FEMA2
- Magical Candy Store SOLUTION CNDYGAME
- Unusual Queries SOLUTION UNSQUERS
- Red-Black Boolean Expression SOLUTION RB2CNF
- Chef and the Combination Lock SOLUTION CHEFSSM
- Scalar Product Tree SOLUTION SCALSUM
- Connect on a Grid (Challenge) SOLUTION CONGRID
October Lunchtime 2020 CodeChef SOLUTIONS
- AND Plus OR SOLUTION ANDOR
- Chef and Subtree MEXs SOLUTION SUBMEXS
- Chef Likes Good Sequences SOLUTION GSUB
- Cute Chef Gift SOLUTION COPAR
- Chef Is Just Throwing Random Words SOLUTION SSO
- Counting Spaghetti SOLUTION CDSUMS
- Chef and Edge Flipping SOLUTION EFLIP
RELATED :
- Top Best Keylogger in Python 3 Make One
- What is Hacking?
- Secrets of the Deep Dark Web
- CODECHEF September Lunchtime 2020 SOLUTIONS
- August Lunchtime 2020 SOLUTIONS
Related :
- A. Shandom Ruffle SOLUTION
- B. Pear TreaP SOLUTION
- C. Sneetches and Speeches 3 SOLUTION
- D. The Grim Treaper SOLUTION
- Y. Sneetches and Speeches 1 SOLUTION
- Z. Trick or Treap SOLUTION
- A. Floor Number SOLUTION CODE FORCES
- B. Symmetric Matrix SOLUTION CODE FORCES
- C. Increase and Copy SOLUTION CODE FORCES
- D. Non-zero Segments SOLUTION CODE FORCES
- E. Rock, Paper, Scissors SOLUTION CODE FORCES
- F. Number of Subsequences SOLUTION CODE FORCES
Related :
- Chef and Easy Queries SOLUTIONS CHEFEZQ
- Covid Run SOLUTIONS CVDRUN OCTOBER CHALLENGE
- Positive AND SOLUTIONS POSAND
- Replace for X SOLUTIONS REPLESX
- Village Road Network SOLUTIONS VILLNET
- Random Knapsack SOLUTIONS RANDKNAP
- D-Dimensional MST SOLUTIONS DDIMMST
- Compress all Subsegments SOLUTIONS SEGCOMPR
- Adding Squares SOLUTIONS ADDSQURE
- Inversions SOLUTIONS INVSMOD2 OCOTBER CHALLENGE
- Rooted Minimum Spanning Tree SOLUTIONS ROOTMST