Page Contents

**Coronavirus Spread 2 SOLUTION**

**Coronavirus Spread 2 SOLUTION**

There are N competitors (numbered 1 through N) in a line. For each legitimate I, the I-th competitor begins at the position I and his speed is Vi, for example for any genuine number t≥0, the situation of the I-th competitor at the time t is i+Vi⋅t.

Shockingly, one of the competitors is tainted with an infection at the time t=0. This infection just spreads from a contaminated competitor to another at whatever point their positions are the equivalent simultaneously. A recently contaminated competitor may then taint others too.

We don’t know which competitor is tainted at first. Notwithstanding, on the off chance that we stand by sufficiently long, a particular arrangement of competitors (contingent upon the competitor that was tainted at first) will get contaminated. Your errand is to locate the size of this set, for example the last number of tainted individuals, in the most ideal and most noticeably awful situation.

Information

The principal line of the info contains a solitary whole number T signifying the quantity of experiments. The portrayal of T experiments follows.

The principal line of each experiment contains a solitary whole number N.

The subsequent line contains N space-isolated numbers V1,V2,… ,VN.

Yield

For each experiment, print a solitary line containing two space-isolated numbers ― the littlest and biggest last number of tainted individuals.

Imperatives

1≤T≤104

3≤N≤5

0≤Vi≤5 for each substantial I

Subtasks

Subtask #1 (1 point): N=3

Subtask #2 (99 focuses): unique requirements

Model Input

4

3

1 2 3

3

3 2 1

3

0

3

1 3 2

Model Output

1

3

1

1 2

Clarification

Model case 1: No two competitors will actually have a similar position, so the infection can’t spread.

Model case 2: It doesn’t make a difference who is at first contaminated, the principal competitor would consistently spread it to everybody.

Model case 3: The competitors are not moving, so the infection can’t spread.

Model case 4: The most ideal situation is the point at which the at first tainted competitor is the first, since he can’t contaminate any other person. In the most noticeably terrible conceivable situation, in the long run, the second and third competitors are tainted.

**Coronavirus Spread 2 SOLUTION**

**Coronavirus Spread 2 SOLUTION**

any hint about it?

when will you post solution?

Please send me the answer. It's very urgent.

Please tell the answer.

Please tell the answer.

Can you provide more test case revolving around 0?

Let us help you all a bit go to MAY month contest there you will find the same question with little bit of different logic Questions name Coronavirus Spread

Let us help you all a bit go to MAY month contest there you will find the same question with little bit of different logic Questions name Coronavirus Spread

Let us help you all a bit go to MAY month contest there you will find the same question with little bit of different logic Questions name Coronavirus Spread

still not getting it.can anyone help?